Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
PLoS One ; 19(4): e0300596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578750

RESUMO

INTRODUCTION: Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are pathogens of significant public health interest for which new antibiotics are urgently needed. AIM: To determine the prevalence of ESBLs in E. coli and K. pneumoniae isolates from patients attending the Tamale Teaching Hospital (TTH) in Ghana. METHODOLOGY: The study was a cross-sectional study involving convenience sampling of E. coli and K. pneumoniae isolates from consenting patients' clinical specimens, between April and June 2015. Antimicrobial susceptibility test was performed, and ESBL-producer phenotypes were further screened for BlaTEM, BlaSHV, and BlaCTX-M genes. Patients' clinical data were additionally collected using a structured questionnaire. RESULTS: Of the 150 non-duplicate E. coli and K. pneumoniae isolates identified, 140 were confirmed as E. coli (84%, n = 117) and K. pneumoniae (16%, n = 23). Of these, sixty-two (44%) [E. coli (84%; n = 52); K. pneumoniae (16%; n = 10)] phenotypically expressed ESBLs. The proportion of ESBL-producing isolates was higher in adults (15-65 years) than in neonates (< 28 days) (p = 0.14). Most of the isolates showed a high percentage resistance to ampicillin (96%) and tetracycline (89%), but a relatively lower resistance to amikacin (36%). No isolate was resistant to meropenem. More ESBL producers were multidrug resistant compared to non-ESBL-producers [23% (14/62) versus 18% (14/78); p = 0.573]. Overall, 74% (n = 46) of the ESBL genotypes expressed BlaCTX-M-1 genes, followed by 63% (n = 39) BlaTEM, and 16% (n = 10) BlaSHV. The study showed a high prevalence of ESBL-positive E. coli and K. pneumoniae, mostly CTX-M-1 producers at TTH. CONCLUSION: Routine laboratory ESBL screening is warranted to inform patient management.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Adulto , Recém-Nascido , Humanos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Estudos Transversais , Gana/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Hospitais de Ensino , Testes de Sensibilidade Microbiana
2.
Front Biosci (Landmark Ed) ; 29(2): 82, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420832

RESUMO

BACKGROUND: There are several antibiotic resistance genes (ARG) for the Escherichia coli (E. coli) bacteria that cause urinary tract infections (UTI), and it is therefore important to identify these ARG. Artificial Intelligence (AI) has been used previously in the field of gene expression data, but never adopted for the detection and classification of bacterial ARG. We hypothesize, if the data is correctly conferred, right features are selected, and Deep Learning (DL) classification models are optimized, then (i) non-linear DL models would perform better than Machine Learning (ML) models, (ii) leads to higher accuracy, (iii) can identify the hub genes, and, (iv) can identify gene pathways accurately. We have therefore designed aiGeneR, the first of its kind system that uses DL-based models to identify ARG in E. coli in gene expression data. METHODOLOGY: The aiGeneR consists of a tandem connection of quality control embedded with feature extraction and AI-based classification of ARG. We adopted a cross-validation approach to evaluate the performance of aiGeneR using accuracy, precision, recall, and F1-score. Further, we analyzed the effect of sample size ensuring generalization of models and compare against the power analysis. The aiGeneR was validated scientifically and biologically for hub genes and pathways. We benchmarked aiGeneR against two linear and two other non-linear AI models. RESULTS: The aiGeneR identifies tetM (an ARG) and showed an accuracy of 93% with area under the curve (AUC) of 0.99 (p < 0.05). The mean accuracy of non-linear models was 22% higher compared to linear models. We scientifically and biologically validated the aiGeneR. CONCLUSIONS: aiGeneR successfully detected the E. coli genes validating our four hypotheses.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Humanos , Inteligência Artificial , Antibacterianos , Escherichia coli/genética , Infecções Urinárias/diagnóstico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia
3.
Mol Biol Rep ; 51(1): 327, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393446

RESUMO

BACKGROUND: In the present study, we examine the prevalence of phylogenetic groups, O-serogroups, adhesin genes, antimicrobial resistance, the level of gene expression associated with biofilm formation, and the presence of extended-spectrum beta-lactamase (ESBL) in UPEC strains isolated from both pediatric and adult patients. METHODS: In this cross-sectional study, 156 UPEC isolates were collected from UTI patients. ESBL-producing isolates were detected using the double-disc synergy (DDS) method, and biofilm formation was assessed through a microplate assay. The presence of O-serogroups, adhesion factors and resistance genes, including ESBLs and PMQR genes, was detected by PCR, and isolates were categorized into phylogenetic groups using multiplex PCR. Additionally, the quantitative real-time PCR method was also used to determine the expression level of genes related to biofilm. RESULTS: During the study period, 50.6% (79/156) of the samples were obtained from children, and 49.4% (77/156) were from adults. The highest rate of resistance was to NA (91.7%), while FM (10.9%) had the lowest rate of antibiotic resistance. In addition, 67.9% (106/156) of UPEC isolates were ESBL producers. Most of UPEC isolates belonged to phylogenetic group B2 (37.1%). This study revealed that blaCTX-M and qnrS are widely distributed among UPEC isolates. The mean expression levels of fimA genes were significantly higher in non-biofilm producers than in biofilm producers (p < 0.01). CONCLUSIONS: The high antibiotic resistance rates in this study highlight the significance of local resistance monitoring and investigating underlying mechanisms. Our findings indicate the dominance of phylogroup B2 and group D as the prevailing phylogenetic groups. Consequently, it is imperative to investigate the epidemiological aspects and characterize UPEC isolates across diverse regions and time frames.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Adulto , Humanos , Criança , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Filogenia , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Estudos Transversais , Farmacorresistência Bacteriana/genética , Hidrolases/genética , Biofilmes , Infecções Urinárias/tratamento farmacológico
4.
Proc Natl Acad Sci U S A ; 121(4): e2319162121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227662

RESUMO

The presence of bacteria in the bloodstream is associated with severe clinical outcomes. In mice, intravenous inoculation of Escherichia coli can lead to the formation of macroscopic abscesses in the liver. Abscesses are regions of severe necrosis and consist of millions of bacteria surrounded by inflammatory immune cells. Liver abscess susceptibility varies widely across strains of mice, but the host factors governing this variation are unknown. Here, we profiled hepatic transcriptomes in mice with varying susceptibility to liver abscess formation. We found that transcripts from endogenous retroviruses (ERVs) are robustly induced in the liver by E. coli infection and ERV expression positively correlates with the frequency of abscess formation. Hypothesizing that ERV-encoded reverse transcriptase may generate cytoplasmic DNA and heighten inflammatory responses, we tested whether nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) influence abscess formation. Strikingly, a single NRTI dose administered immediately following E. coli inoculation prevented abscess formation, leading to a concomitant 100,000-fold reduction in bacterial burden. We provide evidence that NRTIs inhibit abscess formation by preventing the tissue necrosis that facilitates bacterial replication. Together, our findings suggest that endogenous reverse transcriptases drive inflammatory responses during bacterial bloodstream infection to drive abscess formation. The high efficacy of NRTIs in preventing abscess formation suggests that the consequences of reverse transcription on inflammation should be further examined, particularly in infectious diseases where inflammation drives negative clinical outcomes, such as sepsis.


Assuntos
Infecções Bacterianas , Retrovirus Endógenos , Infecções por Escherichia coli , Abscesso Hepático , Sepse , Animais , Camundongos , Inibidores da Transcriptase Reversa/farmacologia , Escherichia coli/genética , Infecções por Escherichia coli/genética , Abscesso Hepático/tratamento farmacológico , Abscesso Hepático/genética , Infecções Bacterianas/tratamento farmacológico , Nucleotídeos , Sepse/tratamento farmacológico , Necrose/genética
5.
Vet Res Commun ; 48(2): 1279-1284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175328

RESUMO

Porcine Post Weaning Diarrhoea (PWD) is one of the most important swine disease worldwide, caused by Enterotoxigenic Escherichia coli (ETEC) strains able to provoke management, welfare and sanitary issues. ETEC is determined by proteinaceous surface appendages. Numerous studies conducted by now in pigs have demonstrated, at the enterocytes level, that, the genes mucin 4 (MUC4) and fucosyltransferase (FUT1), coding for ETEC F4 and F18 receptors respectively, can be carriers of single nucleotide polymorphisms (SNPs) associated with natural resistance/susceptibility to PWD. The latter aspect was investigated in this study, evaluating the SNPs of the MUC4 and FUT1 genes in slaughtered pigs reared for the most in Central Italy. Genomic DNA was extracted from 362 swine diaphragmatic samples and then was subjected to the detection of known polymorphisms on MUC4 and FUT1candidate target genes by PCR-RFLP. Some of the identified SNPs were confirmed by sequencing analysis. Animals carrying the SNPs associated with resistance were 11% and 86% for the FUT1 and MUC4 genes respectively. Therefore, it can be assumed that the investigated animals may be an important resource and reservoir of favorable genetic traits for the breeding of pigs resistant to enterotoxigenic E.coli F4 variant.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Escherichia coli Enterotoxigênica/genética , Diarreia/genética , Diarreia/veterinária , Polimorfismo de Nucleotídeo Único , Doenças dos Suínos/genética
6.
Microbiol Spectr ; 11(6): e0152523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916813

RESUMO

IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in humans and animals, leading to death and huge economic loss worldwide. Thus, elucidation of ETEC's pathogenic mechanisms will provide powerful data for the discovery of drugs serving as prevention or therapeutics against ETEC-caused diarrheal diseases. Here, we report that ArcA plays an essential role in the pathogenicity and virulence regulation in ETEC by positively regulating the expression of several key virulence factors including F18 fimbriae, heat-labile and heat-stable toxins, Shiga toxin 2e, and hemolysin, under microaerobic conditions and in vivo. Moreover, we found that positive regulation of several virulence genes by ArcA requires a global repressor H-NS (histone-like nucleoid structuring), implying that ArcA may exert positive effects by antagonizing H-NS. Collectively, our data established a key role for ArcA in the pathogenicity of porcine ETEC and ETEC strains isolated from human infections. Moreover, our work reveals another layer of regulation in relation to oxygen control of virulence factors in ETEC.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Animais , Suínos , Escherichia coli Enterotoxigênica/genética , Virulência/genética , Toxina Shiga , Infecções por Escherichia coli/genética , Diarreia/veterinária , Fatores de Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enterotoxinas
7.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970873

RESUMO

The repeated emergence of multi-drug-resistant (MDR) Escherichia coli clones is a threat to public health globally. In recent work, drug-resistant E. coli were shown to be capable of displacing commensal E. coli in the human gut. Given the rapid colonization observed in travel studies, it is possible that the presence of a type VI secretion system (T6SS) may be responsible for the rapid competitive advantage of drug-resistant E. coli clones. We employed large-scale genomic approaches to investigate this hypothesis. First, we searched for T6SS genes across a curated dataset of over 20 000 genomes representing the full phylogenetic diversity of E. coli. This revealed large, non-phylogenetic variation in the presence of T6SS genes. No association was found between T6SS gene carriage and MDR lineages. However, multiple clades containing MDR clones have lost essential structural T6SS genes. We characterized the T6SS loci of ST410 and ST131 and identified specific recombination and insertion events responsible for the parallel loss of essential T6SS genes in two MDR clones.


Assuntos
Infecções por Escherichia coli , Sistemas de Secreção Tipo VI , Humanos , Escherichia coli/genética , Sistemas de Secreção Tipo VI/genética , Infecções por Escherichia coli/genética , Filogenia , Genômica
8.
PLoS Genet ; 19(8): e1010842, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531401

RESUMO

Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Escherichia coli , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Genes Bacterianos , Virulência/genética , Sepse/genética , Filogenia
9.
BMC Res Notes ; 16(1): 163, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550739

RESUMO

OBJECTIVES: Shiga toxin-producing Escherichia coli strains LAA-positive are important cause of human infection. The capability to adhere to epithelial cells is a key virulence trait, and genes codified in LAA pathogenicity island could be involved in the adhesion during the pathogenesis of LAA-positive STEC strains. Thus, our objectives were to compare hes-negative and hes-positive STEC strains in their adherence capability to epithelial cells (HEp-2) and to evaluate the expression levels of the hes, iha, and tpsA in the bacteria adhered and non-adhered to HEp-2 cells. These genes are encoded in LAA, and are virulence factors that participate in adhesion and autoaggregation. RESULTS: We could not observe differences between the adhesion of strains but also in the expression level of of hes, iha, and tpsA. Genes encoded in LAA contribute to the adhesion phenotype though the expression of STEC adhesins is a coordinated event that depends not only the strain but also on the environment as well as its genetic background. Therefore, the results of this study suggest that LAA ,the most prevalent PAI among LEE-negative STEC strains, plays a role in pathogenesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Adesinas Bacterianas/genética , Células Epiteliais/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Linhagem Celular
10.
Front Cell Infect Microbiol ; 13: 1166158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424788

RESUMO

Twenty-two atypical enteroaggregative Escherichia coli isolates from a previous epidemiological study harboring EAEC virulence genes were examined for their adhesion properties. Nine strains showed a typical aggregative adherence (AA) pattern, while 13 strains showed variant AA, such as AA with lined up cells characteristic of the chain-like adhesion (CLA) and AA mainly to HeLa cells characteristic of the diffuse adherence (DA). The aggregative forming pilus (AFP) genes afpA2 and afpR were detected only in strain Q015B, which exhibited an AA/DA pattern. Using Tn5-based transposon mutagenesis on Q015B strain, we identified a 5517-bp open reading frame (ORF) encoding a predicted 1838-amino-acid polypeptide that is genetically related to a putative filamentous hemagglutinin identified in E. coli strain 7-233-03_S3_C2. Therefore, the ORF was named orfHA. The regions flanking orfHA were sequenced and two ORFs were found; upstream, an ORF that encodes a 603-amino-acid polypeptide with 99% identity to hemolysin secretion/activation proteins of the ShlB/FhaC/HecB family, and downstream, another ORF, which encodes a 632-amino-acid polypeptide with 72% identity to the glycosyltransferase EtpC. An orfHA mutant (Q015BΔorfHA) was constructed from strain Q015B. Q015BΔorfHA strain did not adhere to HeLa cells, whereas Q015BΔ orfHA transformed with a pACYC184 plasmid carrying orfHA restored the AA/DA phenotype of strain Q015B. Furthermore, the Q015ΔorfHA mutant had a marked effect on the ability of strain Q015B to kill the larvae of Galleria mellonella. Our results suggest that the AA/DA pattern of strain Q015B is mediated by a hemagglutinin-associated protein which also contributes to its virulence in the G. mellonella model.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Hemaglutininas/metabolismo , Células HeLa , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulência/genética , Adesão Celular , Aderência Bacteriana/genética , Infecções por Escherichia coli/genética , Mutagênese
11.
Vet Microbiol ; 282: 109771, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150059

RESUMO

Enterotoxigenic E. coli (ETEC) susceptibility in pigs is highly influenced by their genotype. The aim of this study was to determine the association between CHCF1 genotype and ETEC F4ab susceptibility in experimentally infected pigs. We investigated ETEC diarrhea development in CHCF1 heterozygous susceptible (RS) (n = 12 pigs) compared to CHCF1 homozygous resistant (RR) (n = 12 pigs) for six days after ETEC F4ab challenge. Afterwards, we genotyped with MUC4 and MUC13 markers to relate performance in identifying ETEC F4ab diarrhea susceptible pigs. In the CHCF1 RS group, 12/12 pigs developed ETEC diarrhea compared with 0/12 pigs in the CHCF1 RR group. Weight gain was lower in CHCF1 RS pigs compared with RR pigs (mean ± SD: 208 ± 323 g and 987 ± 615 g, p = 0.0007). Further, the shedding of hemolytic E. coli was significantly higher in CHCF1 RS pigs from 2 to 6 days post inoculation and they shed the challenge strain for more days (mean ± SD: 3.5 ± 1.6 days versus 0.5 ± 0.5 days, p < 0.0001). Twelve pigs with ETEC diarrhea were misclassified as resistant with the MUC4 marker and four pigs without ETEC diarrhea were misclassified as susceptible with the MUC13 marker. We found complete association between CHCF1 genotype and ETEC diarrhea development in pigs from a herd with Danbred genetics. The CHCF1 marker was more likely to determine the true host susceptibility to ETEC F4ab than the other markers. The marker shows potential for improving reliability of PWD challenge models and potentially for use in breeding for ETEC F4ab/ac resistance.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/genética , Desmame , Reprodutibilidade dos Testes , Diarreia/veterinária , Genótipo , Suscetibilidade a Doenças/veterinária , Doenças dos Suínos/genética
12.
Future Microbiol ; 18: 481-488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256324

RESUMO

Background: The dissemination of polymyxin resistance represents a significant threat to public health. Materials & methods: Sequence-based typing was performed by 53 mcr-1 Escherichia coli isolates using fumC/fimH (CH) genes to characterize clones spreading from pig farming. Furthermore, 12 isolates had their whole genome sequenced for phylogenetic study. Results: The isolates were classified into 22 distinct CH types, and two novel CH types (CH41-1578 and CH4-1579) and one sequence type (ST12652) was also described. According to phylogenetic study, both multilocus sequence typing and CH methods grouped the isolates similarly. Conclusion: Our findings suggest that the dissemination of the mcr-1 gene in pig farming has occurred mainly by horizontal gene transfer, and CH typing proved to be a good tool to characterize E. coli clones.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Suínos , Escherichia coli , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/genética , Alelos , Filogenia , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Adesinas de Escherichia coli/genética , Proteínas de Fímbrias/genética
13.
Anim Biotechnol ; 34(8): 3681-3692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37083115

RESUMO

Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Galinhas/genética , Processamento Alternativo/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
14.
BMC Genomics ; 24(1): 211, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085748

RESUMO

BACKGROUND: Diarrhea is one of the most common diseases in pig industry, which seriously threatens the health of piglets and causes huge economic losses. Enterotoxigenic Escherichia coli (ETEC) F4 is regarded as the most important cause of diarrhea in piglets. Some pigs are naturally resistant to those diarrheas caused by ETEC-F4, because they have no F4 receptors (F4R) on their small intestine epithelial cells that allow F4 fimbriae adhesion. Circular RNA (circRNA) has been shown to play an important regulatory role in the pathogenesis of disease. We hypothesized that circRNAs may also regulate the adhesion of piglet small intestinal epithelial cells to ETEC F4 fimbriae. However, the circRNA expression profiles of piglets with different Enterotoxigenic Escherichia coli F4 fimbriae (ETEC-F4ac) adhesion phenotypes are still unclear, and the intermediate regulatory mechanisms need to be explored. Hence, the present study assessed the circRNA expression profiling in small intestine epithelial cells of eight male piglets with different ETEC-F4 adhesion phenotypes and ITGB5 genotypes to unravel their regulatory function in susceptibility to ETEC-F4ac diarrhea. Piglets were divided into two groups: non-adhesive group (n = 4) with CC genotype and adhesive group (n = 4) with TT genotype. RESULTS: The RNA-seq data analysis identified 13,199 circRNAs from eight samples, most of which were exon-derived. In the small intestine epithelial cells, 305 were differentially expressed (DE) circRNAs between the adhesive and non-adhesive groups; of which 46 circRNAs were upregulated, and 259 were downregulated. Gene ontology and KEGG enrichment analysis revealed that most significantly enriched DE circRNAs' host genes were linked to cytoskeletal components, protein phosphorylation, cell adhesion, ion transport and pathways (such as adherens junction, gap junction) associated with ETEC diarrhea. The circRNA-miRNA-mRNA interaction network was also constructed to elucidate their underlying regulatory relationships. Our results identified several candidate circRNAs that affects susceptibility to ETEC diarrhea. Among them, circ-SORBS1 can adsorb ssc-miR-345-3p to regulate the expression of its host gene SORBS1, thus improving cell adhesion. CONCLUSION: Our results provided insights into the regulation function of circRNAs in susceptibility to ETEC diarrhea of piglets, and enhanced our understanding of the role of circRNAs in regulating ETEC diarrhea, and reveal the great potential of circRNA as a diagnostic marker for susceptibility of ETEC diarrhea in piglets.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Masculino , Suínos , RNA Circular/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Diarreia/genética , Diarreia/veterinária , Escherichia coli Enterotoxigênica/genética , Intestino Delgado , Células Epiteliais , Doenças dos Suínos/genética
15.
Sci Rep ; 13(1): 4283, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922640

RESUMO

Bacterial pulmonary infections are a major cause of morbidity and mortality in neonates, with less severity in older children. Previous studies demonstrated that the DNA of CD4+ T cells in the mouse lung, whose primary responsibility is to coordinate the immune response to foreign pathogens, is differentially methylated in neonates compared with juveniles. Nevertheless, the effect of this differential DNA methylation on CD4+ T cell gene expression and response to infection remains unclear. Here we treated E. coli-infected neonatal (4-day-old) and juvenile (13-day-old) mice with decitabine (DAC), a DNA methyltransferase inhibitor with broad-spectrum DNA demethylating activity, and performed simultaneous genome-wide DNA methylation and transcriptional profiling on lung CD4+ T cells. We show that juvenile and neonatal mice experienced differential demethylation in response to DAC treatment, with larger methylation differences observed in neonates. By cross-filtering differentially expressed genes between juveniles and neonates with those sites that were demethylated in neonates, we find that interferon-responsive genes such as Ifit1 are the most down-regulated methylation-sensitive genes in neonatal mice. DAC treatment shifted neonatal lung CD4+ T cells toward a gene expression program similar to that of juveniles. Following lung infection with E. coli, lung CD4+ T cells in neonatal mice exhibit epigenetic repression of important host defense pathways, which are activated by inhibition of DNA methyltransferase activity to resemble a more mature profile.


Assuntos
Infecções por Escherichia coli , Pneumonia Bacteriana , Animais , Camundongos , Linfócitos T/metabolismo , Escherichia coli/genética , Animais Recém-Nascidos , Pulmão/metabolismo , Pneumonia Bacteriana/metabolismo , Metilases de Modificação do DNA/genética , Infecções por Escherichia coli/genética , Metilação de DNA , Linfócitos T CD4-Positivos , Expressão Gênica
16.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768620

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Humanos , Camundongos , Enterócitos , Infecções por Escherichia coli/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana , Fosfotransferases , Virulência/genética
17.
Anim Biotechnol ; 34(5): 1849-1854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35357269

RESUMO

CTX-M beta-lactamases are one of the most important extended spectrum beta-lactamase (ESBL) resistance enzymes found in E. coli. In the present study, 59% of E. coli isolates from mastitis cow milk were reported to be positive for ESBL types. The prevalence of beta-lactam (ß-lactam) antibiotic resistance was reported to be 84%, 72.7%, 52.27%, 50%, and 45.4% for cefotaxime, cefepime, cefuroxime, oxacillin, and cephalexine, respectively. The blaCTX-M gene was found in 65% (n = 17) of the E. coli isolates when they were genotyped. Further, the use of a CRISPR/cas9 cassette to target the E. coli blaCTX-M gene revealed changes in antibiotic phenotypes for cefotaxime.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite , Bovinos , Feminino , Animais , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Leite/metabolismo , Sistemas CRISPR-Cas/genética , Fenótipo , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas , Mastite/genética , Doenças dos Bovinos/genética
18.
Anim Biotechnol ; 34(5): 1815-1821, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35544537

RESUMO

Escherichia coli (E. coli) F17 is one of the main pathogens causing diarrhea in young livestock. The specific F17 fimbriae and lipopolysaccharide (LPS) in the surface components of E. coli F17 induces immune activation via interacting with the intestinal epithelial cells (IECs)-expressed innate immune toll-like receptors (TLRs) signaling pathway. In this study, the expression patterns of eight canonical genes from the TLR signaling pathway (IL-6, IL-8, IL-1ß, TLR4, MyD88, CD14, TNF-α and TRAF6) were analyzed in LPS-induced IECs, E. coli F17-infected IECs and ileum tissue of E. coli F17-infected lambs. The results showed that increased expression levels of all the studied genes were observed following post-LPS-induced and E. coli F17-infected treatment, with TLR4 having the highest up-regulated expression multiple (compared to NC, fold change = 17.94 and 20.11, respectively), and CD14 having the lowest up-regulated expression multiple (fold change = 2.68 and 1.59, respectively), and higher expression levels of all the studied TLR signaling pathway genes were observed in ileum tissue of E. coli F17 antagonistic (AN) lambs than in E. coli F17 sensitive (SE) lambs. Furthermore, when compared to LPS-induced IECs, E. coli F17-infected IECs showed a more pronounced increase in the expression of IL6, TLR4 and TNF-α, indicating the different roles of these genes in the IECs resistance to E. coli F17 infection. Our results demonstrate that the TLR signaling pathway likely promotes immune activation and provide the first evidence that TLRs have a significant potential to protect against E. coli F17 infections.


Assuntos
Infecções por Escherichia coli , Doenças dos Ovinos , Animais , Ovinos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa , Transdução de Sinais/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Células Epiteliais/metabolismo , Doenças dos Ovinos/induzido quimicamente , Doenças dos Ovinos/genética
19.
Biochem Genet ; 61(1): 202-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35834114

RESUMO

Mastitis is one of the most important diseases of dairy cattle. It is an infectious disease leading to an inflammatory reaction in the cow's mammary gland. Escherichia coli is one of the common bacteria which induce mastitis in cows. The aim of this study was to identify key genes and potential pathways associated with mastitis induced by E. coli in dairy cattle using bioinformatics analysis. The gene expression profile of ten samples including five adjacent tissues from a quarter infected with Escherichia coli and five tissues from a healthy quarter of dairy cattle was assessed using GEO2R. Gene ontology and pathway analysis were performed using bioinformatics tools. A total of 156 differentially expressed genes were detected which 95 genes were upregulated and 61 genes were downregulated in adjacent tissue of quarter infected compared with healthy tissue. Cellular oxidant detoxification and oxidation-reduction process were the most significant biological process terms in gene ontology analysis. The most important pathways of DEGs were the biosynthesis of amino acids, p53 signaling pathway, and Metabolic pathways. Three important modules were identified and their path enrichment analysis was performed. There are 10 core genes, among which SOD2, COL1A2, COL3A1, POSTN, ALDH18A1, and CBS may be the main genes associated with mastitis, which can be considered as candidate genes in the prevention and carly diagnosis program of mastitis.


Assuntos
Infecções por Escherichia coli , Mastite Bovina , Feminino , Animais , Bovinos , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Mastite Bovina/genética , Mastite Bovina/microbiologia
20.
Am J Trop Med Hyg ; 108(1): 181-186, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36509047

RESUMO

Class 1 and Class 2 integrons are mobilizable elements able to carry a variety of antibiotic resistance determinants. In the present study, Class 1 and 2 integrons present in 355 pathogenic Escherichia coli (285 diarrheagenic, of these 129 were enteropathogenic, 90 enteroaggregative, 66 enterotoxigenic, and 70 bacteremic) isolated from healthy and ill children under age 5 from periurban areas of Lima, Peru, were characterized. The presence of integrase 1 and 2 was established by polymerase chain reaction (PCR), and variable regions were grouped by PCR-restriction fragment length polymorphism and subsequent sequencing. Antimicrobial resistance was established by disk diffusion. Ninety-seven isolates (27.3%) presented integrase 1, and 16 (4.5%) presented integrase 2 (P < 0.0001); in addition, seven (2.0%) isolates, six diarrheagenic and one bacteremic, presented both integrase genes. The presence of integrase 1 was more frequent among bacteremic isolates (P = 0.0004). Variable regions were amplified in 76/120 (63.3%) isolates with up to 14 gene arrangements. The most prevalent gene cassettes were those encoding dihydrofolate reductases as well as aminoglycoside modifying enzymes. Of note, Class 1 integrons tended to be associated with the presence of extended-spectrum ß-lactamases (ESBLs). A variety of Class 1 and 2 integrons were detected in diarrheagenic and bacteremic E. coli, demonstrating the heterogeneity of variable regions circulating in the area. The association of integrons with ESBLs is worrisome and has an impact on the development of multidrug resistance.


Assuntos
Bacteriemia , Diarreia , Infecções por Escherichia coli , Escherichia coli , Integrons , Criança , Pré-Escolar , Humanos , Antibacterianos/farmacologia , Bacteriemia/epidemiologia , Bacteriemia/genética , Bacteriemia/microbiologia , Diarreia/epidemiologia , Diarreia/genética , Diarreia/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Integrases/genética , Integrons/genética , Testes de Sensibilidade Microbiana , Peru/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...